The Role of Nickel in Stainless Steels

Peter Cutler: Director Promotion, Nickel Institute
&
Gary Coates: Consultant to Nickel Institute

Indian Stainless Steel Development Association
&
Indian Institute of Metals (Delhi Chapter)

New Delhi, 14 December 2011

The Nickel Institute does not present forecasts or comments on nickel markets, prices or supply/demand. The Nickel Institute does promote the long term use of nickel to contribute to a sustainable future.
Nickel Institute

- Promote appropriate uses of nickel-containing materials
- Work towards appropriate regulation
- Offices in Toronto, Brussels, Beijing, Tokyo, Raleigh (USA, NiPERA)
- Partnerships with stainless steel development associations, e.g. ISSDA
- Not-for-profit
- Represents ~ 75% of global nickel production
Nickel - lasting value

Safe Use of Nickel in the Workplace

A Guide to Health Maintenance of Workers Exposure

Nickel and Mobile Phones

Nickel Stewardship

Nickel is essential for the effective operation of mobile phones. It is used in microwave diaphragm, electrical connections and capacitors, and is an essential element of the battery of the phone to be used to shield users from electromagnetic radiation and equipment interference.

Nickel is sometimes used on the surfaces of mobile phones to exploit its properties and respond to fad trends and the demand for greater choice.

Some rare cases of individuals developing dermatitis caused by nickel-related allergies when nickel-plated mobile phone surfaces are in contact with the skin (on central ear, wrist, hand) for long periods of time.

This advisory note seeks to advise manufacturers of mobile phones to assess and minimize the risk of nickel-related contact dermatitis.

Assessing the risk

This advisory note cannot replace dermatologists' overviews with an ongoing risk analysis. The risk assessment must include nickel-plated enclosure and mobile phone components, connectors for sub-processes in the wireless phone industry.

Nickel is also present in the surface of mobile phones. The risk associated with nickel dermatitis may increase with increasing exposure. Nickel is present in the mobile phone, and the risk of dermatitis may vary with exposure.

www.nickelinstitute.org

NICKEL IN SOCIETY
Lasting value, innovative solutions

Nickel Institute
Knowledge for a brighter future
History of Stainless Steel

- 1751: Axel Fredrik Cronsted (Sweden) discovers Nickel
- 1778: Carl Wilhelm Scheele (Germany) discovers Molybdenum
- 1797: Nicolas-Louis Vauquelin (France) discovers Chromium
- 1912: Eduard Maurer (Germany) is granted a Patent on Austenitic Stainless Steel
- 1913: Henry Brearley (UK) produces Martensitic Stainless Steel
- 1919: Elwood Haynes (US) is granted a Patent on Ferritic Stainless Steel
- 1930: Duplex Stainless Steel are initially produced (Sweden)

It took 115 years to produce Stainless Steel, even after the discovery of Chromium.

N. Mathur, Maastricht 2011
Chrysler Building, 1927
Chromium is the essential element in stainless steel.

Nickel is used in ~60% of stainless steel.

What is the role of nickel?
Nickel, an austenite stabiliser

Nickel equivalent = Ni% + 30C% + 30N% + 0.5Mn% + 0.3Cu% (by weight)
Fig. 19 Effect of nickel, manganese, and nitrogen on alloys containing 18.5% chromium at 0.05–0.08% carbon. Structure after cooling from 1075°C (1967°F).32

Binder et al quoted in Peckner & Bernstein
Fig. 20 Effect of chromium, manganese, and nickel on alloys containing 0.12 to 0.15% carbon and 0.08 to 0.15% nitrogen. Structure after cooling from 1075°C (1967°F).
Chrome-Manganese Stainless Steel : Historical Development

• 15% Cr-Mn-1.5Ni. Stainless Steels were in use in Germany in 1940’s

• Used in Dairy Industry, Beer Industry and House-hold Appliances.

• In early 50’s during Korean War, U.S. Government restriction of 1% Nickel (max.) for Stainless Steel in certain applications.

• Following Grades developed by ALLEGHENY termed IA 201

<table>
<thead>
<tr>
<th>Cr. (Min.)</th>
<th>Mn. (Min.)</th>
<th>C (Max)</th>
<th>Ni. (Max)</th>
<th>N (Max)</th>
<th>Substitute for AISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>15</td>
<td>0.15</td>
<td>0.99</td>
<td>0.25</td>
<td>301</td>
</tr>
</tbody>
</table>

N. Mathur, Maastricht 2011
Chrome-Manganese Stainless Steel : Post Korean War Scenario

Post Korean War Scenario

- Softer Alloys preferred

- Half of Nickel only replaced by Mn. and N.

- AISI designation in 1955 to 201 and 202

<table>
<thead>
<tr>
<th>Grade</th>
<th>C</th>
<th>Cr.</th>
<th>Mn.</th>
<th>N</th>
<th>Ni.</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>0.15 Max</td>
<td>16.0 – 18.0</td>
<td>5.5 – 7.5</td>
<td>0.25 Max</td>
<td>3.5 – 5.5</td>
</tr>
<tr>
<td>202</td>
<td>0.15 Max</td>
<td>17.0 – 19.0</td>
<td>7.5 – 10.0</td>
<td>0.25 Max</td>
<td>4.0 – 6.0</td>
</tr>
</tbody>
</table>

N. Mathur, Maastricht 2011
Strength and ductility
Work hardening

![Graph showing work hardening for different types of steel](image)
Energy absorption - bus frame roll-over test

Centro Inox
Energy absorption
Nickel and toughness

Low temperature impact properties of Type 304L stainless steel

Impact energy (J) vs. Temperature (°C)

Large Hadron Collider, CERN
NICKEL IN FERRITIC STAINLESS STEEL

• The DBTT is often above ambient temperature
• The DBTT will often limit the maximum thickness for practical use
• The DBTT will be even higher for welded steel
• The DBTT may have an influence on production yields of a grade

Poor toughness is the biggest drawback to ferritic stainless steels
NICKEL IN FERRITIC STAINLESS STEEL

Effect of Nickel on Mechanical Properties

Effect of nickel on the toughness of 3 different 28Cr-2Mo ELI (extra low interstitial) ferritic SS alloys
a) without Ni
b) with 4%Ni
c) with Ti & no Ni
d) with Ti & 4% Ni, higher interstitial
e) with Nb and 4%Ni, higher interstitial
NICKEL IN FERRITIC STAINLESS STEEL

Effect on Mechanical Properties

409Ni (S40975) with 0.5-1.0% Ni

In the low alloyed ferritic stainless steels, a small nickel addition gives favourable properties:
- grain size control, especially important in welded constructions and thicker material, leading for example to higher toughness
- increased yield strength including at higher temperatures (to 500ºC)
In the railway wagon sector, NI and ISSDA have been providing active help, although the alloy 409M contains only about 1% nickel. But this is a high tonnage application (14,000 wagons of 8 tonnes each this fiscal year)
Formability

Stala
Formability

Deep drawing

Stretch forming
Formability
Delayed cracking
Weldability

Austenitic grades generally have good weldability
High temperature properties

Temperature, °F

Stress, MPa

Stress, ksi

Temperature, °C

0.1% creep per 1000 h

304

Type 316 stainless steel

Nickel

430

Inconel

410

Incoloy

446

309

310

Stresa, 2009
Toughness after elevated temperature exposure

<table>
<thead>
<tr>
<th>Stainless Type</th>
<th>Room Temp. Charpy Keyhole Impact Strength after 10,000 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unexposed (J)</td>
</tr>
<tr>
<td>304</td>
<td>123</td>
</tr>
<tr>
<td>316</td>
<td>108</td>
</tr>
<tr>
<td>321</td>
<td>145</td>
</tr>
<tr>
<td>410</td>
<td>45</td>
</tr>
<tr>
<td>430</td>
<td>62</td>
</tr>
</tbody>
</table>
From stainless steels to nickel alloys
Corrosion resistance
Pitting Resistance Equivalent

\[\text{PRE} = \text{Cr}\% + 3.3\text{Mo}\% + 16\text{N}\% \]
Nickel and corrosion propagation

Charles

Stresa, 2009
Nickel and Chloride Stress Corrosion Cracking

Copson U-Curve

- Cracking
- No cracking
- Minimum time to cracking

Time to failure, hours

Nickel Content, Wt.%
Hygienic

304 wine tanks, Italy
Ferromagnetism

• Austenitic grades are generally not ferromagnetic

• Special applications

• Impact on recycling
Duplex grades
Nickel stabilises the austenitic structure

\[
Ni\% + 30 C\% + 30 Cr\% + 0.3 Mn\% + 0.3 Cu\%
\]
Why duplex stainless steels are used

- Duplex grades are ~ 1% of stainless steel production

- A lot of work has gone into their development and they are well-characterised

- Used because of the combination of:
 - Corrosion resistance - including to stress corrosion cracking
 - Mechanical properties - particularly strength
 - Fabricability
 - Economical overall
Positioning of Duplex grades
An excellent combination of high strength and corrosion resistance

Corrosion Resistance, CPT typical

P_{\mu2} [MPa]

LDX 2101®, LDX 2404®, 2304, 2205, 2507, Hot coil

LDX 4565, 4439, 254 SMQ, 904L, 4436, 4404, 4307, 4438

Austenitic

Duplex
Phase balance

- In duplex grades, aim is around 50/50 austenite/ferrite

- This requires approximately \(\text{Ni}_{eq} = 0.5 \text{Cr}_{eq} - 2 \)

- \(\text{Ni}_{eq} = \text{Ni} + 0.5 \text{Mn} + 0.3 \text{Cu} + 25 \text{N} + 30 \text{C} \)

- \(\text{Cr}_{eq} = \text{Cr} + 1.5 \text{Mo} + 0.75 \text{W} \)
Partitioning of elements between ferrite and austenite

- Broadly similar for all alloys
- N has low solubility in ferrite so is concentrated in austenite

Lean duplex 2101

Cr 1.14
Ni 0.62
Mn 0.84
Ranking for pitting resistance

- PRE = Cr + 3.3 Mo + 0.5 W + 16 N

- Compositions balanced so that commercial duplex grades have similar PRE for both phases
Precipitation reactions which may occur in duplex grades

(Charles)
The New extended duplex family.
After Beaune 2010 and COMO 2011.

No clear fully equivalent grades are developed by the different Stainless steels Producers; individual marketing strategy are developed. We can nevertheless consider the following families:

- The ‘low Mo” grades (Mo lower than 3 typically 1.5%) PREN 30-34 Typically 2003 / 2404.
- The “Standard” 2205 PREN 33-36
- The “classical” Super-Duplex Grades PREN >40-42 (25Cr / Cu / W)
- The Hyperduplex grades PREN 46-…56!
- Yes but! What about a Mn duplex family to reduce Ni? What about Cu, W, REM, Ba… ??? Yes complexity is there!
Welding of duplex grades

- Duplex stainless steels solidify as ferrite.

- Ni encourages the formation of austenite on cooling.

- Most filler metals are over-alloyed with about 2% extra Ni to help formation of sufficient austenite (>30%) to provide toughness.

- Filler metal with 7-8% Ni has been shown to be suitable for lean duplex, where it also helps with low temperature toughness.

- Further details are in recently revised publication “Fabricating Duplex Stainless Steels” from IMOA.
Duplex stainless steels – weld filler

Wrought material

<table>
<thead>
<tr>
<th>Alloy</th>
<th>%Cr</th>
<th>%Ni</th>
<th>%Mo</th>
<th>%N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S32101</td>
<td>21.5</td>
<td>1.5</td>
<td>0.4</td>
<td>0.22</td>
</tr>
<tr>
<td>S32205</td>
<td>22.5</td>
<td>5.5</td>
<td>3.2</td>
<td>0.17</td>
</tr>
<tr>
<td>S32750</td>
<td>25.0</td>
<td>7.0</td>
<td>4.0</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Weld filler metal for above

<table>
<thead>
<tr>
<th>Alloy</th>
<th>%Cr</th>
<th>%Ni</th>
<th>%Mo</th>
<th>%N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2101</td>
<td>23.0</td>
<td>7.0</td>
<td>0.2</td>
<td>0.14</td>
</tr>
<tr>
<td>ER2209</td>
<td>23.0</td>
<td>8.5</td>
<td>3.2</td>
<td>0.17</td>
</tr>
<tr>
<td>25-10-4L</td>
<td>25.0</td>
<td>9.5</td>
<td>4.0</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Design

- A full range of duplex stainless steels are now contained in a number of design codes, e.g. ASME, API.

- Higher proof strength compared with similar austenitic grades offers weight-saving advantages, up to ~50%.

- Full advantage of higher strength may not be gained if the design is limited by elastic modulus, which is similar for all grades of stainless steel.
Minimum tank wall thickness, API 650 standard, Outokumpu data

![Graph showing minimum cylindrical wall thickness for various materials according to API 650 standard.]
Municipal water storage tank – Matsuyama, Japan

- Roof + top: 2205
- 7.5m of side wall: 2205
- Floor + 2.2m side wall: 304
- 4m intermediate side wall: 316
- Staircase, Piping and ancillaries: 304
Stonecutters bridge, Hong Kong

- 2,000 t of hot-rolled 2205 duplex stainless steel plate used for top 120 m of towers
- Structural requirements and zero maintenance
Doha International Airport, S32003

Image: Qatar Airways
Other grades

- Martensitic
- Precipitation hardening
Nickel is one element that increases the amount of Cr that can be added and still form austenite at high temperatures, necessary to get martensite formation when quenched.
NICKEL IN MARTENSITIC SS

Effect on Corrosion Properties

1. Most standard martensitic SS have relatively low Cr content, 11.5-13.5%, and thus have relatively low general corrosion resistance compared to austenitic grades with higher Cr content

2. Nickel increases the corrosion resistance of the martensitic grades to both general corrosion and localized corrosion. The higher Cr S43100 has the highest corrosion resistance of any of the standard martensitic SS

Note: all the martensitic SS have their best corrosion resistance in the hardened and tempered condition; corrosion resistance is much poorer in the annealed condition
NICKEL IN MARTENSITIC STAINLESS STEEL

Martensitic-ferritic-austenitic grades (triplex)

1. 1.4418 grade is typically 65% martensite, 30% austenite and 5% ferrite in the tempered condition
2. It is a weldable martensitic SS with corrosion resistance, good strength and good ductility
3. Major use in small to medium-sized water turbines (Francis, Kaplan), also used in Pulp & Paper industry
Super-Martensitic grades

1. Super-martensitic grades were developed specifically for high pressure, generally sweet gas applications for offshore use.
2. There are grades with 2.5-6.5% nickel, some containing Mo, some without.
3. They are produced as seamless or welded pipe, but they must be welded on an offshore pipe-laying platform.
4. A short Post Weld Heat Treatment is usually performed (e.g. a few minutes at 600°C).
NICKEL IN PH GRADE STAINLESS STEEL

Some nickel-containing PH SS

<table>
<thead>
<tr>
<th>UNS / EN</th>
<th>Common Name</th>
<th>Type</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S17400</td>
<td>17-4PH</td>
<td>M</td>
<td>15.0-17.5</td>
<td>3.0-5.0</td>
<td>-</td>
<td>Cu, Nb</td>
</tr>
<tr>
<td>S13800</td>
<td>PH13-8Mo</td>
<td>M</td>
<td>12.25-13.25</td>
<td>7.5-8.5</td>
<td>2.0-2.5</td>
<td>Al</td>
</tr>
<tr>
<td>S45000</td>
<td>C450</td>
<td>M</td>
<td>14.0-16.0</td>
<td>5.0-7.0</td>
<td>0.5-1.0</td>
<td>Cu, Nb</td>
</tr>
<tr>
<td>S17700</td>
<td>17-7PH</td>
<td>SA</td>
<td>16.0-18.0</td>
<td>6.5-7.75</td>
<td>-</td>
<td>Al</td>
</tr>
<tr>
<td>S35000</td>
<td>AM350</td>
<td>SA</td>
<td>16.0-17.0</td>
<td>4.0-5.0</td>
<td>2.5-3.25</td>
<td>N</td>
</tr>
<tr>
<td>S66286</td>
<td>A286</td>
<td>A</td>
<td>13.5-16.0</td>
<td>24.0-27.0</td>
<td>1.0-1.5</td>
<td>Ti,V,B,Al</td>
</tr>
</tbody>
</table>

Types: M = Martensitic
SA = Semi-austenitic
A = Austenitic
NICKEL IN PH GRADE STAINLESS STEEL

Role of Nickel in PH Grades

1. All PH grades contain nickel, which is needed to obtain austenite to martensite transformation
2. Nickel gives higher corrosion resistance (general corrosion, localized corrosion, stress corrosion cracking)
3. Nickel gives improved ductility and notch toughness
NICKEL IN PH GRADE STAINLESS STEEL

Mechanical Properties of 17-4PH

Minimum values at room temperature acc. to ASTM A564 for some possible heat treatments

<table>
<thead>
<tr>
<th>Condition*</th>
<th>Thickness (mm)</th>
<th>Yield Strength (MPa)</th>
<th>Tensile Strength (MPa)</th>
<th>Elong. (%)</th>
<th>R of A (%)</th>
<th>Hardness (Brinell)</th>
<th>Charpy V-notch (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H900</td>
<td>≤ 75</td>
<td>1170</td>
<td>1310</td>
<td>10</td>
<td>40</td>
<td>388</td>
<td>-</td>
</tr>
<tr>
<td>H925</td>
<td>≤ 75</td>
<td>1070</td>
<td>1170</td>
<td>10</td>
<td>44</td>
<td>375</td>
<td>6.8</td>
</tr>
<tr>
<td>H1025</td>
<td>≤ 200</td>
<td>1000</td>
<td>1070</td>
<td>12</td>
<td>45</td>
<td>331</td>
<td>20</td>
</tr>
<tr>
<td>H1075</td>
<td>≤ 200</td>
<td>860</td>
<td>1000</td>
<td>13</td>
<td>45</td>
<td>311</td>
<td>27</td>
</tr>
<tr>
<td>H1150</td>
<td>≤ 200</td>
<td>725</td>
<td>930</td>
<td>16</td>
<td>50</td>
<td>277</td>
<td>41</td>
</tr>
<tr>
<td>H1150M</td>
<td>All</td>
<td>520</td>
<td>795</td>
<td>18</td>
<td>55</td>
<td>255</td>
<td>75</td>
</tr>
</tbody>
</table>

*The condition refers to the aging heat treatment; e.g. H900 is heating to 900°F (482°C) for 1 hour, then air cool
Lustre - an intangible quality

Olympic hockey stadium, Torino

Centro Inox
Stainless Crude Steel Production

(ISSF data)

Source: ISSF
Stainless steel Production status-India

- Growth of Long products annually at 20.5% compared to Flat products annually at 8.8% (over last 8 years)
- Within flats, coils and plates have grown much faster at 19.8% per yr
- Flat products now account for 72% of the total production.
- Almost 64.5% of the total production is in 200 series.
- Fastest Growth in 400 series (34%) followed by 300 series (18.5%);
- Overall 200 Series growth at nominal 7.7% annually. Within 200 (1.4%Ni) growth at 16.4% per yr
Environmental aspects
Nickel, stainless steel and CO₂ “content”

kg CO₂ equivalent*/kg material

Primary nickel has a high CO₂ equivalent output ...

Highly resource-intensive production of nickel demands credible response from industry to realize resource savings potential

<table>
<thead>
<tr>
<th>Material</th>
<th>CO₂ equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>31.1</td>
</tr>
<tr>
<td>Ni</td>
<td>15.2</td>
</tr>
<tr>
<td>Al</td>
<td>13.1</td>
</tr>
<tr>
<td>Cu</td>
<td>5.5</td>
</tr>
<tr>
<td>Plastics</td>
<td>5.4</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>3.4</td>
</tr>
<tr>
<td>Iron & steel</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Nickel, stainless steel and CO₂ “content”

kg CO₂ equivalent*/kg material

Primary nickel has a high CO₂ equivalent output ...

- Highly resource-intensive production of nickel demands credible response from industry to realize resource savings potential

... but in its major use its CO₂ output is lower than that of aluminum, copper or plastics

Nickel in use lower than most non-stainless substitutes

<table>
<thead>
<tr>
<th>Material</th>
<th>CO₂ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>31.1</td>
</tr>
<tr>
<td>Ni</td>
<td>15.2</td>
</tr>
<tr>
<td>Al</td>
<td>13.1</td>
</tr>
<tr>
<td>Cu</td>
<td>5.5</td>
</tr>
<tr>
<td>Plastics</td>
<td>5.4</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>3.4</td>
</tr>
<tr>
<td>Iron & steel</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>CO₂ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary nickel</td>
<td>15.2</td>
</tr>
<tr>
<td>Only 10% nickel needed</td>
<td>0.8</td>
</tr>
<tr>
<td>50% nickel coming from scrap</td>
<td>0.8</td>
</tr>
<tr>
<td>CO₂ related to primary nickel</td>
<td>2.6</td>
</tr>
<tr>
<td>CO₂ other than nickel</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Stainless steel

Leiden EU report 2005, Eurofer, EU Webpage, ISSF

Stresa, 2009
Energy use and carbon footprint through the whole life cycle

- Important to consider the whole life cycle

- Yes, more energy is needed to produce 1 kg of nickel compared with the production of 1 kg of other metals

- BUT for a civil aircraft, > 95% of the energy involved in its whole life is during use (fuel). That is where nickel helps engines to be efficient and so makes a huge contribution to reducing the total energy used.

Ashby
Example of Nickel as critical raw material in technologies for Mitigating the Climate Change and Low Carbon Economies

<table>
<thead>
<tr>
<th>Mitigation strategy</th>
<th>Nickel’s contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>More fuel efficient vehicles</td>
<td>Batteries: nickel metal hydride batteries are used in hybrid electric vehicles and all electric plug-in vehicles.</td>
</tr>
<tr>
<td>Fuel switching from coal to natural gas</td>
<td>Sweetening of sour gas: due to their corrosion resistant properties, nickel containing alloys are critical in the cleaning, or ‘sweetening’ of sour gas—natural gas that contains significant amounts of sulphur.</td>
</tr>
<tr>
<td>Carbon capture and storage (CCS)</td>
<td>Piping and vessels: long term storage of the CO2 is envisaged either in deep geological formations, such as saline aquifers or oil fields, in deep ocean masses, or in the form of mineral carbonates. Nickel containing alloys would be required in the piping and vessels of each of these processes as they all involve corrosive environments.</td>
</tr>
<tr>
<td>Nuclear power</td>
<td>Tubing in steam generators: specialized nickel based alloys are used as tubing for steam generators in nuclear power plants, as they perform well in these high temperature, high pressure environments.</td>
</tr>
<tr>
<td>Wind power</td>
<td>Tough steels: many of the components of a wind turbine, such as the rotor hub, are cast in ductile iron, with 1% nickel added for added impact strength at low temperatures.</td>
</tr>
<tr>
<td>Solar power</td>
<td>Tower systems: the heat transfer fluid used in solar power tower systems is typically molten salt. Due to the corrosive nature of this material, nickel containing alloys are typically used in the tubing that contains the salt.</td>
</tr>
<tr>
<td>2nd generation biofuels</td>
<td>Pre-treatment: sulphuric acid is commonly used as a pre-treating agent in cellulosic ethanol production, necessitating the use of stainless steels. Other processes use high temperature, requiring higher nickel containing alloys.</td>
</tr>
</tbody>
</table>
Introduction to Yale’s nickel and stainless steel studies

- Professor Tom Graedel & Barbara Reck (Yale University, USA) work since early 2000 on metal flows and stocks through society
- Yale University has gained an outstanding reputation in this area
- Nickel Institute cooperated with Yale University to assess nickel and stainless steel flows
The stainless steel life cycle

Using the Stocks and Flows Models to calculate recycling rates

• Recycling Rates are an important indicator for various stakeholders, particularly regarding sustainability:
 ▪ Nickel producers and recyclers to identify potential for improvement throughout the whole value chain
 ▪ Analysts and marketing people to identify regional and global trends
 ▪ Authorities to identify areas for regulatory measures

• Stocks and Flows models build the basis for any recycling rate calculation

• Sound data ensure that adequate measures are taken within industry but also by regulatory environment around industry

2ND Chinese Nickel Producers Meeting
Beijing, 11 October 2011
Using the Stocks and Flows Models to calculate recycling rates

- **2006**: Declaration by the metals industry on recycling principles signed by 14 associations (Al, Cu, Pb, Ni, Zn, Sn, Co, ...)

\[
RIR = \frac{\text{Metal recycled}}{\text{Total metal production}}
\]

\[
\text{RER} = \frac{\text{Recycled metal}}{\text{Metal available for recycling (old + new scrap)}}
\]

\[
\text{EOL/RER} = \frac{\text{Metal recycled}}{\text{Metal available for collection (old scrap)}}
\]
Using the Stocks and Flows Models to calculate recycling rates: End of Life Recycling Efficiency Rate

EOL Recycling Efficiency Rate
(2005):
63.3%
Importance of recycling

For a metal like stainless steel, which has a long service life, “recycled content” does not reflect the true extent of recycling. It makes much more sense to talk about the “recycling ratio”, that is the proportion of end-of-life scrap which is actually recycled. Stainless steel is then one of the World’s most recycled materials.

Because so much stainless steel is still in use and is not yet available for recycling.
Importance of recycling

Buildings Made From Recycled Materials
Stunning

Stainless Steel: One Of The World’s Most Recycled Materials

Stresa, 2009
Waste water treatment - Life Cycle Cost

- 98% reduction in maintenance costs
- 25% extra plant capacity

Huddersfield, UK

Waste water treatment

Old

New ↓

Stresa, 2009
Life Cycle Cost Example

- First stainless steel raw water pipe in India (Mettur dam, 1998)
- No corrosion allowance
- 300 mm x 3 mm grade 304 stainless steel replaced 900 mm x 13 mm cast iron
- Lightweight meant easy installation in hilly country
- >50 year life expected (2 replacements of cast iron in that time)
- Smooth and smaller bore meant sustained low pumping costs
- Very low maintenance costs

- LCC analysis: >60% saving over 50 years
300 series is available in many forms

This is one reason why they are so widely used
Consider all the factors when selecting a grade

- Corrosion resistance
- Operating temperature
- Strength - influences thickness & weight
- Other mechanical properties
- Fabrication and welding
- Physical properties
- Appearance
- Tooling costs
- Life cycle costs
- Availability: confidence in suppliers
- Familiarity
- Recyclability, environmental impacts and benefits
- Degree of comfort (risk, insurance)
Delhi metro coach – 301L for structural, skin & furnishings
Local railcar interior, Mumbai, India - 304
Nickel in Stainless Steels - summary

- Nickel-containing stainless steels have a continuing role because of their combination of characteristics
- Select appropriate grades for appropriate applications

- Performance
- Customer satisfaction
- Shareholder value
- Enhanced image
- Market growth