Interior, Exterior & Structural Applications

Design Considerations

- Is the environment
 - Interior controlled climate?
 - Sheltered exterior environment?
 - High or low traffic?
 - Scratching, denting, graffiti, urine
- Type 304 most interior applications
- Type 316 coastal and polluted exterior locations
- Use an appropriate finish and visual standard
- One supplier per finish

DG Bank Headquarters Berlin, 2001 Type 304 conference room exterior and structural components Architect: Gehry Partners

DG Bank Skylights

Bibliothèque François Mitterand

Woven stainless on walls, draped from ceilings and over windows

Bibliothèque François Mitterand

Woven stainless steel mesh on the building exterior

September 11 Museum Building, New York

- Situated between the sites of the two towers
 - Perforated Type 316 roof and wall sunscreen cladding
 - Two finishes to create texture
 - Glass bead blasted and mirror polished
- Other park applications
 - Type 316 park benches, water feature components, lighting, subway station canopy
 - 2205 walkway gratings

Type 304 Vibration finish on wall panels and ceiling Softly diffuses light and hides scratches

Hyatt Center

S. Wacker Dr., Chicago Pei Cobb Freed Type 316 exterior/ Type 304 interior panels Soft embossed finish highlights British artist Keith Tyson's art

New England Aquarium

Overlapping Type 304 shingles Ground finish simulates fish scales

Sears Tower lobby, Chicago, DeStefano & Partners Architects Hairline and swirl finishes

Custom stainless steel table David Curry, designer ferromobius innovative designs

Mean Bacteria Count After Cleaning 10 Seconds - Abraded Sink Surfaces (x 10⁴ cfu/cm²)

knowledge for a brighter

Stainless Steel Kitchen Cabinets & Custom Table Base

Corrosive Indoor Public Transit

- Corrosiveness increased by
 - Exposure to coastal or deicing salt
 - Urine exposure
- Type 316 and smooth finishes for locations with salt or urine exposure
- Fire safety also important

Southwark Station, London

Washington National Airport elevators

Embossed and polished column cover Miami International Airport

Etched Column covers Tokyo International Airport, 2nd terminal

Column Cover Details

knowledge for a brighter future

Petronas Towers

Kuala Lumpur, Malaysia

Cesar Pelli & Assoc.

Stainless: Type 316 Height: 88 stories 1,483 feet (452 m)

Flat panels: 0.098 in., (2.5 mm), Cambric finish

Tubular panels: 0.118 in. (3.0 mm), No. 4 polish

Type 316 HyClad Cambric finish Fine No. 4 finish details

One Canada Square, Canary Wharf,London

Cesar Pelli & Assoc.

Examples of Traditional Wall Panel Joints and Attachment to Concrete Wall

Ray and Maria Stata Center for Computer, Information, and Intelligence Sciences

Massachusetts Institute of Technology, Boston

Type 316 overlapping shingles Non-directional finish Gehry Partners

PARTIAL PLAN OF LAYOUT

.

Peter B Lewis Building

Case Western Reserve University, Cleveland

Peter B Lewis Building Details

Overlapping, interlocking shingles in a predetermined design

University of Texas, Natural Science & Engineering Research Building

Type 304, electrochemically colored stainless shingles

Design for 50+ year life to sustainable design standards

Nickel

knowledge for a brighter future

Maggie's Cancer Center Dundee, Scotland

Gehry Partners Flat lock seam roof A small entrance that makes a big design statement

Illinois Institute of Technology, Chicago

Architect: Rem Koolhaas

Corrugated wall panels and perforated patio screens

Nippon Sheet Glass Building

Osaka City, Japan Type 304 with black electrochemical color Scratching damage is visible at ground level

Neiman Marcus Store

Electrochemically Colored Stainless Steel Custom color variation creates wave pattern

Experience Music Project Seattle, Gehry Partners

41 Union Square

Perforated stainless steel sunscreen panels Installed over poured concrete building and windows Screens reduces building energy consumption

41 Union Square

Sun Screens

University of Chemistry, Physics, and Electrical Engineering (CPE), Lyon

Installation of perforated sunscreens over an existing glass wall dramatically reduced heat gain

Kuala Lumpur International Airport Stainless Steel Plant Support Sun Screens

Residential Photo Studio

Salzburg, Austria Electrochemically colored stainless Deliberate color variation Shaped like camera lens

Stainless Doors Provide Long-Term Durability & Security

Toronto Stock Exchange 1932

Cast disks

Tiffany & Co. Solid vault-like doors

100 Summer Street, **Boston** Type 316, No. 4 Finish

Renovation First floor of a weathering steel building

Design

- All standard metal designs are possible in stainless steel
- There are differences in
 - -Thermal expansion
 - -Strength
 - -Appropriate thickness
 - -Weight/square foot

Chrysler Building

Completed 1930

Type 302, 2B finish

Stainless replacement masonry angles and wall ties

Wind Uplift Resistance

- Design
- Material strength
- Strength retention over time
 - Minimal corrosion

Hurricane Katrina New Orleans Mint

Stainless roof, private residence, Florida Both roofs exposed to 257 km/hr gusts

Impact Resistance

Increased strength = Increased impact resistance

- UL 2218 Class 4 impact resistance
- Resistant to:
 - Hail damage
 - Damage from walking on roofs
 - Perforation by falling tree limbs and wind blown debris
- Best performance stainless steel or carbon steel

Copper hail damage

Roofing Finishes

- Low reflectivity
- Most common finishes
 - 2D
 - 2B
 - Terne-coated (tin, zinc/tin)
 - Rolled-on abrasive blasted look finishes
- Other finishes
 - Electrochemical color
 - Nickel oxide coated
 - Zinc coated "spangled"
 - Paint (plastic resin) coating
 - Embossed and colored

Bending Characteristics Annealed Stainless Steel

R = bend radius, T= metal thickness

Туре	Free Bend	V-Block
Austenitics	180°R = 1/2 T	135°R = 1/2 T
Ferritics	180°R = T	135°R = T

Standing seam roof detail with very tight bends

Standing Seam Roofs

Thickness and pan width comparison (mm) and profiles

Pan Width	Stainless Steel	Galvanized Steel	Copper	Aluminum
430	0.38	0.61	0.55	0.81
580	0.46	0.61	0.69	1.02

Reform Later Day Saints Temple Complex

Hellmuth Obata Kassabaum Architects

Standing seam roof, 4,500 roof panels, Type 304, 2D finish

's-Hertogenbosch Apartment Block, Netherlands

1 mm thick, 2B finish, Type 304 Adjoining fresh water artificial water course

Doha International Airport

Under construction – estimated completion 2012

INTEGRAL SNAP-LOCK SEAM W/PATENTED VINYL Weatherseal (Optional) Cee-Lock Panel * U.S. Patent No. 4641475

Roof: Duplex AL2003 and 2205 Interior: Type 304

Kowloon Station, Hong Kong

Batten cap design, Type 316, proprietary dull rolled finish resembling abrasive blasting

Stainless Steel Roofing Fasteners

All metal roof types

NEOPRENE

PURLIN

- Stainless steel
- Aluminum
- Painted galvanized steel
- Wood shingles, tile, slate

San Francisco Type 316 bay-side sine-wave roof design represents rolling hills, ocean waves, movement.....

Stainless Steel Wire Ties for Tile or Slate

Recommended by FEMA in coastal areas Should be considered for any corrosive high wind area

Hurricane damage

Gateway Arch

First large stainless steel structural application

Architect: Eero Saarinen

Completed: 1965

192 m (630 ft.) high

Exterior: Type 304, 6.3 mm (0.25 inch) plate, No. 3 polish

Interior: Carbon steel, 9.5 mm (0.375 inch) plate

Stainless Steel's Advantages

- Corrosion resistance
 - Sustainability/long term performance
 - Avoid coatings and see structural detail
 - Reduce maintenance
 - Long term security
- Seismic performance
- Impact resistance
- High temperature strength & stiffness retention
- High strength stainless steels

- Reduce section sizes & minimize visibility

Japanese Structural Demonstration Building

Osaka, Japan

Photo taken after major 1995 earthquake - No damage

Pio of Pietrelcina Church, Italy

Type 316 used in seismic design

Stainless mesh ties stones in arches together to allow movement during earthquakes

Roof supports above arches are stainless steel

Fire and Thermal Radiation Resistance

- Aluminum is least resistant
 - Aluminum's strength decreases above 100°C
 - 6061-T6 tensile strength decreases 60% at 200°C
- Carbon & weathering steel are normally fire proofed
 - Carbon steel limited to 370°C under continuous loading
 - Carbon steel tensile strength drops 30% at 500°C
 - Weathering steel tensile strength drops 50% >540°C
- Stainless steel has better strength and stiffness retention
 - Stainless steel used for heat treating furnaces for other metals

Fire Testing Video

Darchem Engineering Fire Resistance Testing Summary

Test: Loaded structural cable supports exposed to 1,000 – 1,050 C (1832-1922°F) flames

Requirement: Retain structural integrity for 5 minutes

Metal	Result	Comments
Stainless Steel	Passed	Test extended to 45 minutes when gas ran out. No failure occurred. Deflection was 80.5 mm (3.2 inches) after 45 minutes.
Galvanized Steel	Passed	Deflection was 166.5 mm (6.6 inches) after 5 minute test, some molten zinc observed
Aluminum	Failed 26 seconds	Collapsed
Fiberglass	Failed 30 seconds	Collapsed and started to burn, releasing fumes

Darchem Engineering 2-Hour Radiant Heat Testing

Loaded structural supports exposed to radiant heat from cabinet

Requirement: Retain structural integrity until temperature stabilizes

Summary: Carbon & stainless steel maintained structural integrity. Carbon steel stabilized faster and had 3 times the deflection

Metal	Result	Comments
Stainless Steel	Stabilized in 3 hours	Average temperature at end of test = 556 C Stainless had 1/3 the deflection of carbon steel
Galvanized Steel	Stabilized in 2 hours	Average temperature at end of test = 552 C 3 times the deflection of stainless steel
Aluminum	Failed 12 minutes	Average ladder temperature at failure = 238 C
Fiberglass	Failed 6 minutes	Average ladder temperature at failure = 185 C

Stiffness Retention at Elevated Temperature

7 times the stiffness retention of carbon steel at 800 C (1472 F)

Toughness vs temperature

700 KG Ball Impact Carbon Steel Reinforced Concrete

700 KG Ball Impact Type 304 Stainless Reinforced

Stainless Steel Reinforced Concrete

- Concrete slab connections in seismic zones
- Impact and blast security
 - Building walls, security barriers
- Buildings with sensitive electronic equipment
 - MRI facilities, government buildings

Coastal Ground Anchors & Retaining Walls

San Francisco ground anchors Salt = corrosive soil

After >50 years, unprotected stainless ground anchors had no significant corrosion

Triple protected carbon steel deterioration after 15 years

Stainless initial cost is lower

New Bangkok International Airport

- Type 316 sun screens over skylights
- One the world's largest low profile stainless steel and glass curtain walls 37 m high, 441 m long

New Poly Plaza, Beijing Skidmore Owings & Merrill

Type 316 cable 2205 tension bars and spiders

Apple Cube, Manhattan

Glass supported by high strength 2205 duplex, Points of light created with highly polished Type 316

knowledge for a brighter future

US Air Force Memorial

Pei Cobb Freed Structural: Arup Type 316 plate 0.75 in (19 mm)

3- step dull finish

66 - 87 meters (218 to 284 feet)

South Bank Arbour, Brisbane, Australia Type 316 plate and wire support plants over a curving walkway

New York City New 2nd and 7th Avenue Subway Lines Both lines will extend up the sides of Manhattan Island

Extensive use of Type 316 in 23 stations and tunnels

The new 2nd Avenue subway along the east side of Manhattan

Some section open including Fulton Street station

2020 completion

2nd Ave Entrance design Hanover Square/Ferry Station Type 316 structural components and glass

Conclusions – Stainless Steel

- Very sustainable construction material, particularly for
 - Long building service lives
 - Corrosive locations
 - High traffic/low maintenance
- High level of design and finish flexibility
- Contact ISSDA or the Nickel Institute for free literature and technical assistance
- Questions?

