Stainless Steel Architectural Design

Sponsors: Nickel Institute ISSDA

Speaker: Catherine Houska

Topics

- Sustainability
- Selection, design & maintenance
- Finish options
- Project Specification
- Interior & exterior applications
- Roofing
- Structural applications

Why is Sustainable Design Important?

- Buildings consume
 - -40% of the world's energy
 - 32% of world's materials
 - 12% of our water
- India Green Building Council estimates
 - Domestic market for green building materials & equipment will exceed \$50 B by 2012

Stainless Steel Provides Proven Longevity

- Numerous projects 80+ years of service
 - Excellent performance
- Appropriate specification & maintenance
 - Potentially 100's of years of service

Chrysler Building 1930 First large stainless roof

Gateway Arch, 1965 First large stainless structural application

The Driving Force – World Green Building Council (WGBC) Countries

- Scoring systems for all types of building and construction projects
 - All building types, water treatment plants, infrastructure, industrial buildings
- LEED
 - Formally used in US, Canada, India
 - Dominant international scoring system
 - Internationalization of LEED
 - Input from 22 countries
 - Adaptable to local priorities

World Green Building Council Countries

92 countries with current/emerging scoring systems

International Corporate Commitment

% of firms dedicated to green building on at least 16% of projects, by region

Sustainable Construction Characteristics

- Design for long service life
- Minimize material use, waste & impact
 - Avoid replacement during service life
 - High recycled content or renewable
 - No landfill waste or high recapture rate
- Preserve natural resources & building environment
 - Minimize energy and potable water use
 - Minimize toxic run-off and other environmental impacts
 - Capture and reuse gray water
- Healthy productive indoor environment
 - Low emission materials and natural light

Life Cycle Cost Two Piers, Progreso, Mexico

Long service life = no material replacement Cost effective and environmentally friendly Minimum service life mandated in countries with green building requirements

- Functional pier
 - –About 70 years old (1937-1941)
 - -Stainless rebar
- Non-functional pier
 - 30 years after construction
 - -Carbon steel rebar

Photo courtesy of the Nickel Institute

Average Rates (%)

	Recycled Content	Recapture Rate
Carbon Steel		
Sheet/strip	25-35 **	70
Structural	≤95 **	97
Stainless Steel	60 - 90**	92
Zinc	23 **	33
Copper		
Electrical wire	0 *	>90
Other products	70 – 95 *	>90
Aluminum		
Sheet	0 *	70
Extrusions	Varies *	70
Castings	≤100 *	70

* ABC Industry ** All Applications

Reusing Stainless Steel

525 William Penn Place Pittsburgh, Pennsylvania Completed in 1952

- Stainless entrance/lobby
- Exterior spandrel panels
- Lobby renovation in 2002
- Most of the stainless steel was refinished and reused
- Architect IKM

After

Before

Stainless Steel Can Be Easily Restored

150 East 42nd Street, New York City Cleaned for the first time after 40 years of service

Photo courtesy of Allegheny Ludlum

Jamaica Train Terminal, New York

100 year design life - with low maintenance Type 316 - coastal, moderate urban pollution

Wayne L Morse US Federal Courthouse **Eugene Oregon, US Gold LEED 2006**

Type 304, vibration finish 100 year design life

Reducing Energy Use & Heat Islands

- Material and finish choice
 affects performance
 - Exterior roof & wall panel materials
 - Sunscreens
- Solar Reflective Index (SRI)
 - Calculated based on ASTM E1980
 - Solar Reflectance & Emittance
 - Varies with finish
- Roof slope (1:6) & exterior walls ≥ 29
- Low slope roofs \geq 79

Perforated sunscreens San Francisco Federal Building Woven sunscreens Planet M, Hanover

Product	Temperature Rise, at C (F)	Solar Reflective Index
Stainless Steel, bare	27 (48 F)	39-60
Galvanized steel, bare	30 (55 F)	46
Aluminum, bare	27 (48 F)	56
Any metal, white coating	9 (16 F)	107
Clay tile, red	32 (5 8F)	36
Concrete tile, red	39 (71 F)	17
Concrete tile, white	12 (21 F)	90
Asphalt, generic white	36 (64 F)	26
Asphalt, generic black	46 (82 F)	1
Wood shingle, brown	37 (67 F)	22
Wood shingle, white	6 (10 F)	106

Sources: LBNL Cool Roofing Materials Database and finish producers

Pittsburgh Convention Center (2003) World's First Sustainable Convention Center

- Heating/cooling by 33%
- High recycled content
- Locally produced
- 50+ year life requirement

- Type 304
- Batten cap design
- High wind uplift resistance

Guangzhou China 2nd Children's Activity Center

Type 316 woven mesh sun screens helped to eliminate air conditioning in public spaces

Curving sunscreens made a simple concrete building very modern at reduced cost

US Federal Building, San Francisco

- Type 316 perforated sunscreens
- Surpasses the U.S. government energy performance criteria by 50%

University - Cooper Union New York

- Type 316 sunscreens contributed to 40% energy savings
- USGBC Platinum LEED rating

Italian Engineering Building Renovation

Perforated stainless sunscreens Reduce air conditioning requirements and provide low maintenance long service life

Stockholm Congress Centre

2205 Sunscreens reduce energy requirements Swedish Green building certification expected

knowledge for a brighter future

ThyssenKrupp AG Corporate Headquarters

- Type 316 sunscreens on multiple buildings
- Contributing to 20-30% energy savings
- Pre-certificate Gold German Certification for Sustainable Buildings

Welded Stainless Green Roof Liners

- 1 Plants in soil
- 2 Filter membrane
- 3 Drainage layer

- 5 Thermal insulation
- 6 Vapor barrier
- 7 Roof deck
- 4 Welded molybdenum-containing stainless steel

Metal Roof Run-Off Averages (mg/m²)

	Copper	Lead	Zinc
Rusty galvanized	20	302	12,200
Asphalt	11	10	1,980
Galvanized iron	ND	100	3,600
Concrete tile	ND	90	1,600

	Nickel	Chromium
Type 304 Stainless*	0.3 - 0.4	0.25 - 0.3

*In many samples, nickel and chromium levels were below detectable limits. The average concentration per liter was well below typical drinking water levels.

Stadium Australia

Type 316, 2B finish

Drainage system collects water in underground tanks for watering grass and flushing toilets

Scottish Parliament

- Many common building materials release emissions
 - Reducing these creates a healthier environment
 - Bare uncoated metal has no emissions
- Stainless, wood and concrete
 - Interior stainless structural supports, wall and ceiling panels

Stainless Steel Ideal For Sustainable Construction

- Indefinitely recyclable
- High scrap content
 - not down-cycled
 - highly valued and recaptured
- Can reduce building energy and environmental costs
- Can help to save water
- Extents building life
- Can be restored and reused

How Does A Stainless Steel Work?

Stainless steel is iron + at least 11% chromium

< 11% Chromium

> 11% Chromium

Major Alloying Elements

- Iron (Fe)
- Chromium (Cr)
 - Improves corrosion resistance
- Molybdenum (Mo)
 - Improves resistance to corrosion caused by salt (chlorides) and pollution
- Nickel (Ni)
 - Improves ductility, toughness, and weldability
- Nitrogen (N)
 - Improves strength and corrosion resistance

Families of Stainless Steels

- Austenitic
 - 300-series numbers (304, 316)
 - Strengthened by cold work
 - Nonmagnetic
- Ferritic
 - 400-series (430, 447)
 - Magnetic
- Duplex
 - Austenitic/ferritic (2205)
 - More corrosion resistant
 - Higher strength
 - Magnetic

What Factors Influence Corrosion?

- Pollution
 - Acid rain
 - Sulfur Dioxide & particulate
- Coastal and deicing salt exposure
- Weather conditions
- Maintenance
- Design/specification
 - Crevices
 - Finish
- Surface finish roughness & application method
- Handling & post fabrication cleaning

Select Type 304

- Rural/suburban
- Low to moderate pollution

Select Type 316

- Pollution
 - Moderate to high urban
 - Low to moderate industrial
- Coastal and deicing salt
 - Low to moderate exposure

Select More Corrosion Resistant Stainless Steels

- Industrial pollution

 High sulfur dioxides levels
 High particulate levels
- Coastal or deicing salt
 - Salt water splashing or immersion
 - Sheltered unwashed applications
 - Significant deicing salt deposits

Type 316 railings Hong Kong Convention Center seawater spray exposure rough surface finish

Architectural Stainless Steels

(Nominal Chemical Composition, Wt. Pct.)

	Cr	Ni	Мо	Ν	PREn
Ferritic 430	17			0.03	17
444	17.5		1.75		23
Austenitic 304	18	9		0.06	20
316	17	11	2	0.06	23
317LMN	17	13.5	4	0.10	32
6% Mo	19.5	17.5	6	0.18	41-43
Duplex 2304	21.5	3	0.5	0.05	22
2205	22	5	3	0.15	34
Super duplex	24	6	3	0.24	38

PREn (Pitting Resistance Equivalent number) = %Cr + 3.3(%Mo) + 16(%N)Provides a comparison of relative corrosion resistance that is helpful for many but not all service environments

Rating Pollution Levels

City	Pollution Level	Suspended Particulate µgm/m ³	Sulfur Dioxide µgm/m ³
Rio de Janeiro	High	139	129
Beijing	High	377	90
Calcutta	High	375	49
Moscow	High	100	109
Tokyo	Moderate	49	18
New York	Moderate	27	26
Chicago	Moderate	35	14
Stockholm	Low	9	5
Paris	Low	14	14

World Health Organization Data

Rain Acidity (pH)

Critical Temperature/Humidity Combinations for Salt (Chloride) Corrosion

Critical	Critical Humidity Level, %			
Temperature °C (°F)	Sodium Chloride	Calcium Chloride	Magnesium Chloride	
25 (77)	76	30	50	
10 (50)	76	41	50	
0 (32)		45	50	

Coastal Salt Exposure US Coastal Salt Map

New Corrosion Map for India

Chloride Accumulation In Sheltered Locations

Wall

Surface Finish As Critical As Stainless Steel Selection

Typical Sheet Surface Roughness Range

Finish	2D	2B	BA	No. 4	Hair- line	No. 7	No. 8	Super No. 8
R _a Micro- inch	5 - 39	2.4 - 20	0.5 - 4	7 - 25	5.5 - 8.0	2.4 - 8	0.8 - 4	0.4 - 0.8
R _a Micron	0.13 - 1.0	0.06 - 0.5	0.01 - 0.10	0.18 - 0.64	0.14 - 0.2	0.06 - 0.2	0.02 - 0.10	0.01 - 0.02

Evaluation Scores

Cheung Kong	Railings
3	3
3	5
0	0
-1 or -2	2
-2	-3
2 or 3	7
	Kong 3 3 0 -1 or -2 -2

Available at www.imoa.info

Hong Kong Convention Center railings, Type 316

Photo courtesy of Nickel Institute

Cheung Kong Center, Type 316

Galvanic Corrosion Requires...

- Dissimilar metals
- Electrical connection between metals

(i.e., metal-to-metal contact)

Moisture is present and connects the metals on a regular basis

Solution

- Prevent direct contact
 - Inert washers
 - Paint
 - Other non-conducting barriers

Surface area ratio is important!

Stainless steel plate/galvanized steel fasteners

Surface Area Ratio Affects Potential For Corrosion

Good ratio = no impact on corrosion

Stainless steel fasteners in carbon steel

Bad ratio = rapid corrosion

• Galvanized fasteners in stainless steel

Sites for Crevice Corrosion

If the design will be exposed to salt (chlorides) and moisture, avoid crevices or seal them to prevent corrosion

Prevent Carbon Steel Contamination

- Protective surface removable UV rated film
- Store components off site until installation
- Clean tools and equipment
- Do not use
 - Carbon steel brushes, wool, shot
 - Media used on carbon steel or iron
- Do not grind carbon steel near stainless
- Require certification that surfaces are free of contamination

hoto courtesy of Nickel Institute

Sea Walls & Pier Concrete Corrosion

Sidney Opera House Carbon steel reinforced concrete retaining wall corrosion Replaced with Type 316 rebar

Stainless Steel Finishes

Obtaining a Uniform Appearance

- Use one coil or consecutive coils
 from one supplier
- Mark rolling direction and number panels
- Install all panels in the same rolling direction
- Install numbered panels consecutively
- Failing to follow these rules produces a checkerboard appearance

No. 4 Finish Design Example

Achieving Flatness

Use adequate panel thickness

Column Covers2 - 2.8 mmWall panels0.5 - 3 mmRoofing, supported0.5 - 0.6 mmCountertops2 - 2.8 mm

 Avoid long or wide unsupported panels

Metal	Thermal Expansion	Thermal Conductivity
	°C x 10 ⁻⁶	(W/m-C)
Type 304/316	16.9	0.16
2205	13	0.23
Carbon steel	12	0.54
Alloy 400	13.9	0.26
Copper	16.9	3.86
AA 3003	23.2	2.04

Dull or Embossed Finishes Look Flatter Than Reflective Finishes

• Both samples are equally flat

Flat Unlaminated Panels

Reflectivity	Width-to-Thickness Ratio
High	150 max.
Medium-to-low	200 max.
Coined/Embosse	d 200 or higher

No. 2D Mill Finish

- Low reflectivity, semi-matte, uniform silver-gray
- 2D for roofing has final pass through dull rolls
- Not repairable
- Susceptible to fingerprinting
- Primary use roofing
- Surface roughness
 - $-R_a 5.0$ to 39.0 micro-inches (0.13 to 1.0 microns)
 - Roofing gauges are usually under R_a 20 micro-inches

Singapore Turf Club Architect: Ewing Cole

No. 2B Mill Finish

- Smoother and more reflective than No. 2D
- Significant finish variation
 - Cloudy to mirror-like
- Susceptible to fingerprints
- Flashing, roofing, starting point for other finishes
- Surface roughness

 – 2.4 to 20 microinches (0.06 to 0.51 microns)

Bright Annealed (BA)

- Buffed BA
- Highly reflective, mirror-like
- No apparent polishing lines
- Ornamental trim finish
- Minor scratches removable by buffing
- Surface roughness
 - 0.5 to 4.0 micro-inches (0.01 to 0.10 microns)

No. 4 Polish

- Directional, short parallel lines
- Repairable
- Conceals minor scratches
- Applied with abrasive belts (120 to 320 grit)
- Wet or dry polishing
- Significant variation in corrosion performance
- Surface Roughness
 - Ra 0.18 to 0.64 microns

Hairline

- Directional, long fine parallel lines
- Applied with Scotch-Brite® (non-metallic abrasive pads)
- More reflective than No. 4
- Repairable often used for refinishing
- Rolled-on version available
- Surface roughness
 - R_a 0.14 to 0.20 microns

No. 8 Polish

- Mirror-like
- Very fine lines visible upon close examination
- Fine No. 4 polish followed by about 15 to 20 minutes buffing
- R_a 0.02 0.10 microns

Neuer Zollhofs, Dusseldorf, Germany

Super/Supreme No. 8, 9, 10, 11, 12

- Mirror finish, no visible grit lines
- Abrasive polishing plus up to 60 minutes buffing
- Not in ASTM A 480
- Surface roughness
 - R_a 0.01 0.20 microns

Low Sulfur

- For standard finishes specify "low sulfur"
 - -0.005% or less
 - Improved corrosion performance
 - Finish appearance
- For mirror finishes
 Specify 0.002% or less
- Low sulfur tube and pipe may not be available
 - Sulfur makes high speed welding easier

Acid Etching

- A protective coating is applied selectively to the surface using silk screening or other methods
- Unprotected areas are etched to create the design
- The acid is rinsed off and the coating is removed
- Etched areas are a dull silver color

Vibration Finish (angel hair, suede, nondirectional polish)

- Stainless wire brush or nonmetallic abrasive pad
- Applied to a mirror polished or bright annealed finish
- Non-directional, fine, random scratch pattern
- Lines are smaller, finer than distressed finish
- Use control samples

Walt Disney Concert Hall, Los Angeles

Gehry Partners

Type 316, vibration and mirror polished finishes

Distressed Finish (pre-vandalized)

- Non-directional
- Applied over mirror or bright annealed finish
- Grinding wheel or coarse stainless wire brush
- Coarse scratch pattern
- Appearance may not be uniform
- Use control samples

Swirl Finishes

- Applied over 2B or 2D finish
- Grinding wheels or stainless wire brushes
- Swirl patterns
- Use control samples

Proprietary Mechanical Finishes

Pattern Polish Finishes Courtesy Main Steel Polishing, Scott Pease Photographer

Engine-Turned Finishes

- Small circular lines, rings, or overlapping complete circles
- Circles range from 1/2- to 12inch (13 - 305 mm) diameters
- Applied over a mirror finish
- CNC machines control spinning abrasive disks

Abrasive Blasted Finishes

- Non-directional and repairable
- Surface distortion if panels are too thin
- Texture and color vary with blast media
- Susceptible to fingerprinting
- Clean surface before and after blasting
- Always use clean blast media

Effect of Abrasive Blast Media

Fine sand Glass beads Silicon carbide Stainless shot Ground quartz Dark, coarse

Light, smooth, grainy

Dark, coarse

Small, curved indentations

Shiny, coarse, angular indentations

Liner Museum Appenzell, Switzerland 3 mm glass bead blasted

Embossing and Coining

- Applied by passing a stainless steel coil between two rolls
- Coining
 - One roll is patterned
 - One roll is smooth
- Embossing
 - Both rolls are patterned

Jin Mao Building, Shanghai

Skidmore, Owings & Merrill

421 m or 88 stories 220 tons Type 316

Vertical spine panels 1.5 mm, coined Cambric, bright annealed

Tubular features, No. 4 polish

Embossing and Coining

- Increases rigidity and impact resistance
 - Light patterns 10 to 15%
 - Heavy patterns up to 35%
- Conceals scratches and reduces scratch depth
 - Increased surface hardness
 - Uneven surface breaks up visible line

Rolled-On Finishes Can mimic abrasive blasted finishes

Electrochemical Colors

Obtained by thickening the passive film Color can be uniform or deliberately varied Often called "interference" or "living" color

Bronze Blue Gold Red Purple Black Green

Shakaden Temple, Japan Completed 1975 Electrochemically colored

Black roof with gold dots and clips

2010 no change in color

Sputtering or Plasma Vapor Deposition

- Thin, adherent, abrasion resistant, uniform, non-fading
- Color determined by coating Gold (titanium nitride)
 Black (titanium carbide)
 Brown or Blue (titanium aluminum nitride)

Others: Rose Gold, Silver Gold, Brass

Perforated Stainless

Woven Stainless

- Broad range of styles and weights
- Hide scratches
- Impact resistant
- Adds tactile and visual texture
- Interior and exterior applications
 - Ceilings
 - Walls
 - Room dividers
 - Furniture
- Salt (chloride) crevice corrosion must be considered

